Respond Study The Contribution of SonR to Increasing Responder Rates

Francis Murgatroyd
King's College Hospital, London

Francis Murgatroyd Interests 2015-7

- Speaker
 - Boston Scientific, Livanova, Medtronic, St Jude
- Consultancy/Advisory Board
 - Boston Scientific, Medtronic, St Jude
- Research
 - Steering committee: Medtronic
 - Investigator: Livanova, Medtronic, St Jude
- Stock Ownership
 - None

CRT-D vs ICD

MADIT-CRT Subgroup Analysis

- 7 factors associated with response:-
 - Female
 - Nonischaemic
 - LBBB
 - QRS ≥150ms
 - Prior HFH
 - LVEDV ≥125ml/m²
 - LA <40ml/m²
- Weighted score (0-9) derived

How to Optimize Response to CRT

- Pre-implant
 - Select and optimize patients carefully
- At implant
 - Consider multisite/multipoint pacing
 - Optimise LV lead location

Multisite LV pacing Canine Chronic LBBB Model

Multi-Site/Multi-Point Pacing

Multisite LV pacing Canine Chronic LBBB Model

Guiding LV Lead Placement TARGET Study

- N = 221, conventional CRT indication
- Speckle-tracking 2D radial strain analysis (basal and mid LV short axis)
- Randomized 1:1
 - 1. LV lead at site of latest activation (TARGET)
 - 2. Unguided implant (CONTROL)

How to Optimize Response to CRT

- Pre-implant
 - Select and optimize patients carefully
- At implant
 - Optimise LV lead location
 - Consider multisite/multipoint pacing
- After implant
 - Optimize medically, maximize % Vpacing
 - Optimize LV/RV timing

Supoptimal response to CRT Identified Reasons (n = 75, 6mo post implant)

Echo Targets for CRT Optimization

Techniques for Optimization of Timing Intervals

AV Optimization	VV Optimization	
Echo methods		
 Mitral inflow (Ritter, iterative, VTI) Aortic VTI Other (MPI, 3D echo, ICD) 	Aortic VTITissue Doppler Imaging3D echo	
Device Based Algorithms		
 Smart Delay ™ QuickOpt ™ SonR™ 	 QuickOpt ™ SonR ™ (Adaptive CRT™) 	
Other Methods		
Surface ECG (QRS morphology)Finger plethysmographyAccoustic	Surface ECG (QRS morphology)Finger plethysmographyRadionuclide imaging	

Quick-Opt™ (SJM): FREEDOM Trial Results

Primary Endpoint (HF Clinical Composite Score)

- AV optimization based on AEGM width + adjustments
- VV optimization based on RV&LV timings in SR and RV/LV pacing

SmartDelay™ (BSC): SMART-AV Trial Design and Results

- Algorithm derived from ExpertEase (developed during PATH-CHF I & II, & SAVE-R)
- AVD calculated from sensed and paced AVI, and QRSd

Device-Based Algorithms

Adaptive CRT™ (MDT)

Aims to promote intrinsic conduction

- Dynamic measurements of
 - AVd
 - RA-Pend
 - RV-QRSend (from farfield)
- *If conduction good:*
 - LV only pacing to preempt R
- *If conduction poor:*
 - BiV pacing, AV and VV est. from measurements
- If arrhythmia, etc
 - BiV pacing at last determined settings

Device-Based Algorithms

Adaptive CRT™ (MDT)

522 patients randomized (2:1) aCRT vs echo-opt. BiV

- Noninferiority demonstrated:¹
 - Similar improvement in clinical composite score
 - Similar haemodynamic performance

- Retrospective analysis
 - Improved outcomes in aCRT arm, in pts with >50% sLVP (1/3)
 - Improved outcomes with aCRT if AV conduction good, worse if poor

Peak Endocardial Acceleration (PEA)

Device-Based Algorithms SonR™ (Sorin)

- Micro-accelerometer hermetically embedded at tip converts vibration to electrical signal
- Bipolar, 7.8F, silicone insulation/PU overlay

- First PEA signal (during isovol. contraction) correlates with contractility (LV dP/dt)
- Step 1: PEA vs VV delays (7) examined
- Step 2: PEA vs AV delays (11) examined
- Step 3: AUC of AV/VV matrix used to select optimal settings

Weekly AV and VV optimization by SonR is performed at rest and exercise

SonRTM V lead in CRT-P Device

CLEAR Study

N = 238 randomized (CRT not indicated for ICD) Primary endpoint

Proportion of patients who improved in each group at 1 year, based on a composite of:

- All-cause mortality
- Heart failure hospitalization
- Functional class (NYHA)
- QOL (EQ5D)

CLEAR Study results Per protocol analysis

CLEAR Post-Hoc Results

Repeated Optimization is the Key

RESPOND-CRT Study Objectives

To demonstrate that

1. SonRtip atrial lead is safe

2. Auto-optimization with SonR is noninferior to echo AV+ VV to improve CRT response

RESPOND-CRT

Study design

- → International, Multicenter, trial (125 sites in Europe, USA, Australia)
- → Randomized (2:1), Prospective, Double-blinded
- → Enrolment Jan 2012 Oct 2014
- → 2 year followup, results published 2016

PATIENTS

- → LVEF ≤ 35%
- → NYHA III or IV
- \rightarrow LBBB: QRS ≥ 120 ms
- \rightarrow Non-LBBB: QRS ≥ 150 ms
- → Not permanent AF

RESPOND-CRT

RESPOND-CRT

Endpoints

Response to CRT is based on a hierarchical set of clinical criteria

PRIMARY SAFETY END POINT

Freedom from acute (0-3 months) and chronic (4-12 months) SonRtip complications

PRIMARY EFFICACY END POINT

Non-inferiority on the proportion of responders, based on a set of criteria (10% non-inferiority margin), at 12 months

SECONDARY END POINTS

- → All-cause death or HF hospitalization
- → Worsened patients
- Subgroups analysis on the primary efficacy end point

Patient flow chart

Baseline demographics

ATIENT CHARACTERISTICS	SonR	Echo AV & VV	P value
	(n=670)	(n=328)	
Age (years)	67.2 ±10.2	66.6 ±10.2	0.34
Male	70.4%	65.5%	0.12
NYHA class III	96.6%	95.4%	0.027
LVEF %	29.4 ±8.4%	29.6±8.0%	0.78
QRS (ms)	160.7 ±23.1 ms	160.0 ±21.9 ms	0.65
LBBB	84.0%	88.4%	0.06
Ischemic	45.5%	42.5%	0.37
Beta-blockers	89.4%	92.1%	0.18
ACEI, substitutes or ARBs	89.9%	88.7%	0.58
History of atrial fibrillation	15.6%	17.3%	0.49
Diabetes	37.3%	41.8%	0.17
Renal dysfunction	22.8%	24.7%	0.51

Primary Safety End-Points

SonRtip
Implant success rate

SonRtip
Complication free rate
from 0 to 3 months

SonRtip
Complication free rate
from 4 to 12 months

99,8%

98,5%

99,8%

vs 91% (objective) p<0.001 vs 94% (objective) p<0.001

1st 3 month dislodgement rate = 1%

Primary Safety Endpoint Met

Primary Efficacy End-Points (12 months)

Difference in responder rate (12 months)

RESPOND-CRT 2^{ary} Endpoints

Freedom from All-Cause Death or HF Hospitalization

Freedom from HF Hospitalization

Auto Optimisation vs Echo Subgroup Analysis

RESPOND-CRT Conclusions – 12 & 18months

Primary Safety Endpoint

→ SonRtip atrial lead has good safety/dislodgement profile

Primary Efficacy Endpoint

→ SonR <u>at least</u> as effective as AV&VV echo-guided optimization to maximize CRT response

Prespecified Secondary Endpoints

→ SonR ass. With 35% reduction in HF hospitalization

Subgroup Analysis

- → SonR higher response rate in most subgroups, esp.
 - → 48% reduction in CV death/HFH in pts with AF history
 - → 41% reduction in CV death/HFH in pts with renal dysfunction