POTS

Autoantibodies: quirky finding or future therapy?

Artur Fedorowski

MD, PhD, Assoc. Prof., FESC

Dept. of Cardiology

Skåne University Hospital, Malmö, Sweden

in collaboration with Dr. Jonas Axelsson (Karolinska Hospital, Sthm, Sweden)
Disclosures

• Fees and royalties from Cardiome, Thermofisher, Medtronic.
Gunhild Stordalen
Dx Systemic sclerosis Oct 2014

Bone marrow transplant and chemotherapy x 2
Graves’ Disease = Autoimmune Hyperthyroidism

- Autoimmune Disease
- Different autoantibodies against TSHr
- Female predominance (80%)
- Genetic predisposition
- Viral infection a possible trigger
- Causal treatment not available
- Thyroid gland is a prime target for medical interventions
- No therapy aiming at elimination of autoantibodies to date!

Robert James Graves
1796-1853
Thyrotropin receptor (G-protein coupled receptor): Autoimmune target in Graves’ Disease
Autoantibodies detected in POTS exceeding the expected prevalence in the general population

<table>
<thead>
<tr>
<th>The category of autoimmune target</th>
<th>Specific autoimmune targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-protein coupled receptors [43, 45, 47, 48]</td>
<td>1. Adrenergic receptors (Alpha-1Beta-1*Beta-2)</td>
</tr>
<tr>
<td></td>
<td>2. Muscarinic M1 and M2 receptors</td>
</tr>
<tr>
<td></td>
<td>3. Angiotensin II Type 1 receptor</td>
</tr>
<tr>
<td>Ganglionic Acetylcholine-receptor (g-AChR) [26, 48]</td>
<td>1. g-AChR alpha3 subunit</td>
</tr>
<tr>
<td></td>
<td>2. g-AChR beta4 subunit</td>
</tr>
<tr>
<td>Sjögren autoantibodies [41]</td>
<td>1. Novel Sjögren Syndrome panel (carbonic anhydrase-6; parotid secretory protein; salivary protein-1)</td>
</tr>
<tr>
<td></td>
<td>2. Traditional Sjögren Syndrome -A antibodies (SS-A)</td>
</tr>
<tr>
<td>Antinuclear antibodies (ANAs) [40]</td>
<td>-</td>
</tr>
<tr>
<td>Antiphospholipid antibodies [40, 41]</td>
<td>-</td>
</tr>
<tr>
<td>Anti-NMDA (N-methyl-D-aspartate)-type glutamate receptor [25]</td>
<td>-</td>
</tr>
<tr>
<td>Thyroid gland [40, 41]</td>
<td>1. Thyroid stimulating hormone receptor antibodies</td>
</tr>
<tr>
<td></td>
<td>2. Thyroglobulin antibodies</td>
</tr>
<tr>
<td></td>
<td>3. Thyroid peroxidase antibodies</td>
</tr>
<tr>
<td>Cardiac lipid raft-associated proteins and other cardiac proteins [42, 61]</td>
<td>-</td>
</tr>
</tbody>
</table>
Activated adrenergic β-receptor
Nobel Prize in Chemistry for 2012 to Robert J. Lefkowitz and Brian K. Kobilka
Tissue responses to activation of specific adrenergic receptor subtypes

©2010 by American Physiological Society

Gerald W. Dorn II Physiol Rev 2010;90:1013-1062
Hypothetical POTS aetiology

1. Cardiac receptors activating autoantibodies (Tachycardia)
 - Vascular receptors blocking autoantibodies (Vasodilation)

2. Hyperadrenergic activation
 - Sinus tachycardia

3. Hypovolemia
 - Reflex tachycardia

- Vasodilation (Splanchnic region)
- Vasodilation (Lower limbs)

Artur Fedorowski. POTS review. In preparation
Fedorowski et al. Europace (2017)
Angiotensin II Type 1 Receptor Autoantibodies in Postural Tachycardia Syndrome

Xichun Yu, MD;* Hongliang Li, MD, PhD; Taylor A. Murphy, BS; Zachary Nuss, BS; Jonathan Liles, BS; Campbell Liles, BS; Christopher E. Aston, PhD; Satish R. Raj, MD; Artur Fedorowski, MD, PhD;* David C. Kem, MD*
Tango® assays for GPCR signalling

Schematic representation of the Tango GPCR assay (Figure 1)

Ligand

Receptor

Protease site

Protease tagged arrestin

Transcription factor

TF

β-lactamase

Schematic representation of the Tango GPCR assay, courtesy of Life Technologies.
47 POTS patients vs. 24 healthy controls
(age- and gender- matched)

Axelsson J and Fedorowski A.
In preparation.
ROC curves for four different GPCRs

This is not a chance!
What to do?
(Dr. Jonas Axelsson)

- IVIG
- Mabthera
- Plasmapheresis
- Other options – ask your immunology expert!

- "I will prescribe regimen for the good of my patients according to my ability and by judgement and never do harm to anyone…”

(The Hippocratic oath)
Inessa Schwab
& Falk Nimmerjahn
Nature Reviews Immunology 13, 176-189
(March 2013)
Plasmapheresis/Immunoadsorption

Anti-GBM/Goodpasture’s disease

n=10

n=1

Cost: 500 € per PF and 800 € per IA (Karolinska Hospital).
Other options

- Immunosuppressive or cytotoxic agents
- B cell depletion or targeting (rituximab, belimumab)

Activating B cell

- Flares
- Fluctuating autoantibodies

Bone marrow

- Niche

Memory plasma cell

Blood

- Chronicity of autoimmunity
- Persistent autoantibodies
- Refractory to immunosuppression

Inflamed kidney

Spleen or lymph node

Nature Reviews Nephrology (2016)

Hiepe & Radbruch

Nature Reviews Nephrology (2016)
Hiepe & Radbruch
Nature Reviews Nephrology (2016)
Take-home message

✓ There are multiple signals from different centers that POTS patients produce excess autoantibodies against CV receptors (GPCRs) and other autoimmune targets.

✓ These autoantibodies offer a plausible explanation of the observed symptoms.

✓ We do not have data what kind of immunomodulation could be effective in POTS – interventional studies are needed.
Thank you for your attention!